
Biologically Plausible Multi-Dimensional
Reinforcement Learning in Neural Networks

Jaldert O. Rombouts1, Arjen van Ooyen2, Pieter R. Roelfsema2,3, and
Sander M. Bohte1

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{J.O.Rombouts,S.M.Bohte}@cwi.nl

2 VU University of Amsterdam, Amsterdam, The Netherlands
arjen.van.ooyen@cncr.vu.nl

3 The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
p.roelfsema@nin.knaw.nl

Abstract. How does the brain learn to map multi-dimensional sensory
inputs to multi-dimensional motor outputs when it can only observe sin-
gle rewards for the coordinated outputs of the whole network of neurons
that make up the brain? We introduce Multi-AGREL, a novel, biolog-
ically plausible multi-layer neural network model for multi-dimensional
reinforcement learning. We demonstrate that Multi-AGREL can learn
non-linear mappings from inputs to multi-dimensional outputs, given
only scalar reward feedback. We further show that in Multi-AGREL,
the changes in the connection weights follow the gradient that minimizes
global prediction error, and that all information required for synaptic
plasticity is locally present.

1 Introduction

Imagine learning to play squash. High dimensional sensory inputs give rise to
patterns of neuronal activations. These in turn yield a rich motor output, moving
legs and arms to hit the ball with the racket. Which actions were useful? Which
were not? While humans are able to learn such complex tasks, it is not clear how
the brain solves these high dimensional learning problems. In neuronal terms, the
problem is one of credit assignment: how should the efficacies of which synapses
in the brain change to make useful actions more probable?

Reinforcement Learning (RL) [11] offers a mathematical framework for learn-
ing to select optimal actions in Markov Decision Processes. For each possible
state of the world an agent tries to predict the value – Q-values – of all possible
actions. It then selects the best one with high probability. However, estimat-
ing all action-values quickly becomes intractable in high dimensional spaces, the
well-known curse of dimensionality [1].

A natural way to solve high-dimensional learning problems is to decompose
them. Imagine a task that requires actions by both hands. Instead of estimat-
ing values for joint actions (a simultaneous action by left and right hand), as a
naive application of RL suggests, we can estimate the values for atomic actions



2 J.O. Rombouts, A. van Ooyen, P.R. Roelfsema, S.M. Bohte

independently. The optimal joint action can then be produced by selecting lo-
cally optimal atomic actions. While a variety of modular reinforcement learning
systems based on this intuition exist, e.g. [3, 8, 5], ideas on how such approaches
could be instantiated in biologically plausible neural networks are still lacking.

Williams’ REINFORCE algorithm for training neural networks [13] can be
adapted to train neural networks with a modular structure. However, REIN-
FORCE lacks a mechanism to solve the learning problem in an efficient and bio-
logically plausible way. Roelfsema & van Ooyen developed a biologically plausible
learning scheme for training multi-layer neural networks by RL, Attention-Gated
Reinforcement Learning (AGREL) [6]. However, AGREL can only learn to solve
1-of-n classification tasks, as it is constrained to select only single actions.

Here, we present Multi-AGREL, a first biologically plausible network model
for modular reinforcement learning on multiple concurrent atomic actions. We
build on the ideas of AGREL to arrive at a neural network scheme that can
learn to select optimal simultaneous actions based on a scalar reinforcement
signal. For each output dimension, the model has a separate output layer. Units
in these output layers try to learn Q-values [11] for their associated atomic
actions. Each output layer subsequently has a separate stochastic Winner-Take-
All competition (WTA) to select each atomic action. We show that the model
learns to minimize prediction errors by gradient descent on a global prediction
error, and that all information required for synaptic plasticity is local.

Plasticity in Multi-AGREL is determined by two factors, as in [6]. The first
is a globally available neuromodulatory signal that communicates a global pre-
diction error signal. Such a signal could be implemented by a neuromodulator
such as dopamine [10, 7]. The second factor is a set of feedback connections from
output layers back to the hidden layer that gates plasticity based on the atomic
actions that were selected.

We study classification tasks which require linear and non-linear mappings
from inputs to multiple simultaneous outputs. All tasks are single step input-
output mappings where rewards are directly delivered, so that we can concentrate
on solving the spatial credit assignment problem. We empirically demonstrate
that Multi-AGREL can learn to solve multi-dimensional non-linear tasks, and
we also show that Multi-AGREL significantly outperforms a non-biologically
plausible neural network with similar structure trained with REINFORCE [13].

2 Multi-AGREL

Multi-AGREL is modeled as a standard neural network with multiple Winner-
Take-All (WTA) output layers o. In this way multiple atomic actions can be
selected at the same time. The network predicts Q-values [11] for all atomic ac-
tions. In each output layer, a stochastic WTA competition based on the predicted
values selects one atomic action to execute. An example network is shown in fig-
ure 1. For each joint action the network executes it receives a scalar reward r.
The network learns by gradient descent on the global prediction error.

Input patterns xi are presented to the input layer with N units. Hidden unit
activations yj are computed by a sigmoidal function of the linearly weighted



Neurally Plausible Multi-Dimensional Reinforcement Learning 3

WTA WTA

Fig. 1. Multi-AGREL architecture with O separate output layers (shading). Feedback
weights shown with dashed lines.

summed input aj :

yj =
1

1 + exp(−aj)
with aj =

N∑
i=0

vijxi, (1)

where vij is the synaptic weight between input unit i and hidden unit j and v0j
denotes the bias weight. Each output-layer o is fully connected to the hidden
layer with M units by connections wo

jk. Each output layer separately computes
Q-values qok [11]:

qok =

M∑
j=0

wo
jkyj , (2)

where a bias unit y0 is included.
With the Q-value estimates, a controller selects one of the atomic actions

in each output layer. We implemented a max-Boltzmann [12] controller, which
selects the action with the highest estimated Q-value with probability 1− ε, and
otherwise chooses an action with probabilities determined by the Boltzmann
distribution:

Pr(zok = 1) =
exp qok∑
k′ exp qok′

. (3)

The winning units K are then set to an activation of 1 and all other units to an
activation of 0, zok = δokK where δkK is the Kronecker delta function.

After executing an action the network receives a scalar reward r. A prediction
error δ is computed as:

δ = r −
O∑
o

Ko∑
k

zokq
o
k, (4)

where O is the number of output layers and Ko denotes the number of output
units in layer o. We assume that this δ signal is globally available.

Learning. The synaptic updates have two factors, as in AGREL [6]. The first
is the global prediction error δ and the second is a Hebbian interaction be-
tween feedforward activity and attentional feedback signals. The resulting learn-
ing rules are biologically plausible with all information required for the updates



4 J.O. Rombouts, A. van Ooyen, P.R. Roelfsema, S.M. Bohte

available at the synapses [6]. The hidden to output layer synaptic updates are:

∆wo
jk = βyjz

o
kδ, (5)

where β is the learning rate. The synaptic updates between input and hidden
layer are:

∆vij = βxiyj(1− yj)δ
O∑
o

Ko∑
k

Wo
kjz

o
k, (6)

where Wo
kj are feedback connections from the output layer to the hidden layer

[6]. These feedback connections effectively gate the plasticity of the higher level
weights. For convenience, feedback and feedforward weights are assumed to be
symmetrical; they can be trained by (5) as in [6].

Multi-AGREL and AGREL differ from Error-Backpropagation (BP) [9] in
two important respects. First, attention-gated learning does not require a teach-
ing signal for each output node. Instead it is trained with a global prediction
error. Second, it does not require the propagation of specific error signals from
output layers to earlier layers [6, 7]. These two elements make attention-gated
learning schemes biologically plausible, unlike Error-Backpropagation.

Multi-AGREL minimizes global prediction error. The update local learn-
ing rules (5)–(6) update the weights along the gradient on the global prediction
error E:

E =
1

2

(
r −

∑
o

∑
k

zokq
o
k

)2

=
1

2
δ2. (7)

We can derive the updates for weights between the hidden and output layer by
the gradient [2]:

∂E

∂wo
jk

=
∂E

∂qok

∂qok
∂wo

jk

= −δzokyj , (8)

where the negative of the gradient matches the direction of the update given in
equation (5). The updates for the input to hidden layer weights can be written:

∂E

∂vij
=
∂aj
∂vij

∂yj
∂aj

O∑
o

Ko∑
k

∂E

∂qok

∂qok
∂yj

= −xiyj(1− yj)δ
O∑
o

Ko∑
k

Wo
kjz

o
k, (9)

where the rightmost term is the attentional feedback from the output layers via
the feedback connections Wo

kj . Because of the WTA competition, only one unit
per output layer (with zok = 1) contributes to the feedback. The negative of the
right hand side of (9) matches equation (6).

Together, this derivation shows that by combining attentional feedback sig-
nals and a globally available δ signal, Multi-AGREL minimizes prediction error
by gradient descent on the Q-value prediction errors, using local updates.



Neurally Plausible Multi-Dimensional Reinforcement Learning 5

BP-REINFORCE. To compare the Multi-AGREL learning scheme, we imple-
mented the REINFORCE algorithm [13] for a network architecture with multiple
WTA output layers. The architecture and activation functions are the same as
in Multi-AGREL, except for the output layers, where actions were selected as
in equation (3). We applied the REINFORCE updates for output weights [13]:

∆wo
jk = βr(zok − Pr(zok = 1))yj , (10)

The hidden layer weights were updated by Error-Backpropagation [9, 13].

3 Experiments

Tasks To demonstrate the performance of Multi-AGREL we implemented a
set of binary tasks with increasing difficulty. The key aspects that we want to
illuminate are that Multi-AGREL can deal with tasks that require non-linear
transformations and that it scales well to multiple output layers. The tasks were
constructed by concatenating different base tasks:

Linear The input consisted of two binary digits, of which one was randomly
set to 1. The output was required to be the same as the input pattern. We
provided the network with two hidden units for each linear task component.

XOR A version of the non-linear exclusive-OR problem. Two binary inputs need
to be mapped to a ‘match’ signal if both inputs have the same value, and to
a ‘non-match’ signal if they have different values. The output layer had two
units, one coding for ‘match’ and the other for ’non-match’. We provided
the network with two hidden units for each XOR task component.

Counting A set of N binary inputs is presented to the network. The network has
to count the number of input units with activation 1 and output this number
in binary form. We provided an architecture with dlog2Ne+1 output layers,
with two units each. We gave the network dlog2Ne+ 2 hidden units.

We evaluated the learning scheme on seven different tasks: Linear-Linear (LL),
XOR-Linear (XL), XOR-XOR (XX), 3XOR (3X), 4XOR (4X) and the counting
task with 8 (C8) and 32 (C32) inputs. On each trial the input for subtasks was
selected independent of the input for the other subtasks. For instance, in the
3X task six random binary inputs were presented to the network, leading to a
set of 26 possible input patterns. For each output-layer the network received a
reward of 1 if it was correct and 0 otherwise. The network only observed the
total reward obtained.

Details on training For all non-counting tasks, we trained networks for at
most 250, 000 random pattern presentations, or until convergence. Convergence
was determined by keeping track of the rewards obtained in the last 200 trials. If
the average amount of reward was at least 90% of the total possible reward, the
network was said to have reached convergence. For the counting tasks, we set the
maximal amount of training trials to 1, 000, 000. For all results reported here,
we trained 100 networks with random initializations of the synaptic weights.
Weights were sampled from a uniform distribution with range [−0.25, 0.25]. The



6 J.O. Rombouts, A. van Ooyen, P.R. Roelfsema, S.M. Bohte

0.0
0.2
0.4
0.6
0.8
1.0 ● ● ●

LL XL XX
Task

LL XL XX
Task

50
100
150
200
250

x103

C
on

v.
 T

ria
l

C
on

v.
 R

at
e

Multi-AGREL
REINFORCE

Fig. 2. Performance of Multi-AGREL (black) compared to REINFORCE (grey) on
dual tasks, for best parameters found. Left, Convergence rates for 100 simulations
in each condition. Error bars indicate 95% confidence intervals. Right, Box plots show
(from bottom to top) minimal convergence trial, Q1 (lower quartile), Q2 (median, heavy
line), Q3 (upper quartile) and maximal convergence trial. In REINFORCE, learning
rates for each layer were individually optimized for best performance.

exploration rate ε was set to 0.025. We computed the convergence rate (propor-
tion of 100 networks that reached criterion) and 95% confidence intervals. For
convergence times, we report Q1 (lower quartile), Q2 (median) and Q3 (upper
quartile) plus minimal and maximal convergence trials. Non-converged networks
were assigned the maximal number of pattern presentations.

Performance We compared Multi-AGREL to REINFORCE for the dual tasks
(LL, XL and XX), as shown in fig. 2. While performance for the linear task
is very comparable, multi-AGREL significantly outperforms REINFORCE for
tasks with a non-linear component. Substantial effort was made to find optimal
parameters for both algorithms. We evaluated the algorithms with learning rates
(β) of 0.01, 0.05, 0.10, 0.20, 0.30, 0.40; shown are the results for the best learning
rate (highest convergence rate, fastest median convergence time) for both algo-
rithms. For both algorithms 0.4 was the optimal rate for the LL and XL tasks.
For the XX task the optimal rates were 0.30 and 0.05 for multi-AGREL and
REINFORCE respectively. Due to the meagre performance of REINFORCE on
these tasks, we do not show further results for this algorithm.

We further investigated the performance of Multi-AGREL on the harder 3X
and 4X tasks (fig. 3a). Here it also showed a robust performance. For the more
difficult 4X task, the network worked best with a learning rate of 0.01, but
needed more hidden units. We also evaluated Multi-AGREL on the counting
tasks (fig. 3b). These were significantly harder to learn than the 4X task, but
the algorithm could learn to solve both tasks. Note that the model had to train
six disjoint WTA output layers in the C32 task.

Multi-AGREL also performs well in settings with dependent rewards (results
not shown). With dependent rewards, the network only receives reward if all
atomic actions are simultaneously correct. Performance on the dual tasks is very
comparable to that shown in figure 2. However, the network can not escape
from the curse of dimensionality [1]. The networks need significantly more trials
to learn the 3X and 4X tasks with dependent rewards, but this can not be
avoided by any method that learns by trial-and-error. Multi-AGREL is also
robust against an unequal distribution of rewards over the modules (results not



Neurally Plausible Multi-Dimensional Reinforcement Learning 7

0.0
0.2
0.4
0.6
0.8
1.0

●

●
● ●

0.005 0.01 0.1 0.15

C
on

v.
 R

at
e

50
100
150
200
250

0.005 0.01 0.1 0.15

0.0
0.2
0.4
0.6
0.8
1.0 ● ● ● ●

0.01 0.015 0.02 0.025

20
40
60
80

100

0.01 0.015 0.02 0.025

x103

x104

C
on

v.
 T

ria
l

C
on

v.
 T

ria
l

C
on

v.
 R

at
e

3X
4X

C8
C32

a

b

Fig. 3. Scaling performance. Conventions as in fig. 2. a, Performance of Multi-AGREL
on 3X (black) and 4X (grey) tasks. b, Performance of Multi-AGREL on C8 (black) and
C32 (grey) tasks. Note that the learning rates (abscissa) and maximal training times
(ordinate) differ from those in a.

shown). This means that Multi-AGREL also learns effectively in scenarios where
different tasks are rewarded differently.

4 Discussion

We have developed a biologically plausible neural network model that can solve
a variety of difficult multi-dimensional output problems. Our work builds upon a
previous model, AGREL [6], that could learn to solve single-dimensional output
problems. Compared to AGREL, the controller in Multi-AGREL separates the
action-selection policy from the value-estimation, allowing for the independent
selection of atomic actions and the computation of a joints reward estimation.
Multi-AGREL solves the spatial credit assignment problem by a combination of
feedback signals and a globally released neuromodulatory signal which encodes
a global prediction error. The feedback signals encode which atomic actions were
selected, and constrain synaptic plasticity to those synapses that were involved
in the selected joint action.

Compared to REINFORCE, Multi-AGREL exhibits much better convergence
for tasks that contain non-linear components, even when REINFORCE uses the
biologically implausible Error Backpropagation algorithm to update the hidden
layer weights. A key difference is that REINFORCE updates the policies for
all atomic actions after each decision, and not only those that were actually
selected. Updating in this way may destroy the correct policy that was stored in
the synapses for the non-executed atomic actions.

A distinguishing factor in our model is the idea that multiple unrelated
atomic actions can be active at the same time. Most other works assume that
there is a single winning action, with all atomic actions mapping to the same
output space [8, 5]. It is plausible that both types of solutions are used in the



8 J.O. Rombouts, A. van Ooyen, P.R. Roelfsema, S.M. Bohte

brain. Modules competing for the control of a single effector could use a shared
action space model, and modules controlling independent effectors could use a
model like Multi-AGREL. Interestingly, recent experimental work has investi-
gated whether humans could learn to simultaneously solve two independently
rewarded tasks with two different hands [4]. They show that the results are sig-
nificantly more consistent with a reinforcement learning model that modularizes
the two learning problems than one that learns action values over joint actions.
This result gives experimental support for the idea that multiple simultaneous
actions are indeed learned by separate modules.

Multi-AGREL is able to learn mappings for co-activated output modules
based on a single globally available reward prediction error. This is not a trivial
result, as it is not obvious that a global reward prediction error signal com-
bined with local feedback is powerful enough to correctly solve the spatial credit
assignment problem. As is mentioned in [4], module specific prediction errors
would be best for training separate output modules. However, the dopamine sig-
nal found in experiments seems to be unitary throughout the brain [10] (but see
the discussion in [4]). Our model and simulations provide evidence that multiple
modules can be trained with a unitary reward prediction signal.

Acknowledgments. JOR is supported by NWO grant 612.066.826.

References
1. Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)
2. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press,

USA (1995)
3. Chang, Y., Ho, T., Kaelbling, L.: All learning is local: Multi-agent learning in

global reward games. In: NIPS. vol. 16 (2004)
4. Gershman, S.J., Pesaran, B., Daw, N.D.: Human reinforcement learning subdivides

structured action spaces by learning effector-specific values. J. Neurosci. 29(43),
13524–31 (2009)

5. Ring, M., Schaul, T., Schmidhuber, J.: The Two-Dimensional Organization of Be-
havior. In: IEEE ICDL. pp. 1–8 (2011)

6. Roelfsema, P.R., van Ooyen, A.: Attention-Gated Reinforcement Learning of Inter-
nal Representations for Classification. Neural Comput. 2214(17), 2176–2214 (2005)

7. Roelfsema, P.R., van Ooyen, A., Watanabe, T.: Perceptual learning rules based on
reinforcers and attention. Trends cogn. sci. 14(2), 64–71 (2010)

8. Rothkopf, C.A., Ballard, D.H.: Credit Assignment in Multiple Goal Embodied
Visuomotor Behavior. Front. Psych. 1, 1–13 (2010)

9. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition 1 (1985)

10. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and
reward. Science 275(5306), 1593–9 (1997)

11. Sutton, R.S., Barto, A.G.: Reinforcement learning. MIT Press, Cambridge, MA
(1998)

12. Wiering, M.: Explorations in Efficient Reinforcement Learning. Ph.D. thesis, Uni-
versity of Amsterdam (1999)

13. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8(3-4), 229–256 (1992)


